Individually Addressable Incandescent Lamps

Everyone playing with electronics these days knows about LED strips made of dozens or hundreds of individually addressable RGB LEDs. I love them and make great use of them in the nootropic design Lumazoid music visualizer. But what about incandescent lamps? Old-school light bulbs with a filament have a soft warm glow that you just can’t get from LEDs. Wouldn’t it be great to be able to control a bunch of lamps individually by setting their brightness in code on a microcontroller? This is just what I set out to do recently, and the results are great.

Individually addressable lamp module

Individually addressable lamp module

How it works

I simply used the same technology as LED strips to allow communication between lamp modules. LED strips have RGB LEDs with an embedded driver chip which uses PWM (pulse width modulation) to control the duty cycle on the red, green, and blue LEDs. This combined LED/chip is called WS2812 or WS2812B. On older LED strips, the driver chip was not embedded into the LED itself, but was a separate chip called WS2811. These standalone driver chips are somewhat obsolete now which means they are cheap! I got 50 of them on eBay for $5.00. Since these modules use the same technology as LED strips, the same code can be used. Adafruit’s NeoPixel library is a very simple way to control LEDs, so we can control each lamp easily. The lamp is controlled by the “blue” pin on the WS2811 so that is the value to set.

byte brightness = 128;
lamps.setPixelColor(lampNum, pixels.Color(0, 0, brightness));


The driver chip cannot sink enough current to control a lamp directly, so I connected one of the LED output pins (the pin designated for blue) to a P-channel MOSFET. The PWM output from the WS2811 pin controls the MOSFET gate and the MOSFET then controls the current flowing to the lamp. I tried several MOSFETs to find one that worked best for a 5V source and allowed good control at very low PWM duty cycle. The FQP27P06 MOSFET allows the lamp filament to glow at an almost imperceptible level at a PWM duty cycle of 1/255. Since a lamp filament takes a bit of time to turn on/off, there is no flicker at low duty cycles. Nice!


Notice that the module has a big 1500uF capacitor. This is because the PWM creates a lot of ripple in the power line that needs to be smoothed out. At first I did not experience this when using only one WS2811/MOSFET/lamp in the circuit, but as soon as I added more there was lots of flickering caused by power line noise. A big fat cap solved that.

Lamp bulbs and sockets

The board is designed to allow the lamp socket to be mounted on the top or the bottom. That’s why there are 2 lamps in the schematic. There are also solder pads with holes to allow wires to be attached if I don’t want the lamp directly on the board. I used E10 miniature sockets from eBay and #27 bulbs with an E10 miniature base. These are 5V bulbs that draw up to 300mA. These can be bought at Mouser (part number 560-27). Or you can get them and lots of other bulbs from Bulb Town. Who knows more about bulbs than Bulb Town? Nobody, that’s who.


If you are using lots of them at full brightness, you’ll need a beefy power supply. I have 20 lamp modules strung together and power it with a 10A supply. If I try to set all 20 lamps to full brightness at the same time, the lamps at the end of the string are dim because of the resistance in the power wires, so my Arduino driver programs need to account for this. Also, a lamp filament doesn’t turn on/off immediately like an LED, so I also had to take this in consideration in my programs. This slowness in the on/off actually smooths out the illumination so there is no flicker, even at very low duty cycles.


I’m really happy with how this all turned out. I’m not planning on offering these modules as a product because I think the minimum price would need to be about $7 each, which I’m not sure people would want to pay. If you really think I should offer these or are interested, please let me know.

Published by Michael, on May 21st, 2016 at 1:25 pm. Filed under: Arduino,Art. | 5 Comments |

Frequency Filtering with the Audio Hacker Shield

The Audio Hacker shield for Arduino lets you do some cool things with digital signal processing. This new project shows how a fairly simple Arduino sketch can implement a low-pass filter, high-pass filter and band-pass filter.

A low-pass filter allows low frequencies to pass through (makes sense, right?) while attenuating or cutting out the frequencies that are higher than a specified cutoff frequency.

A high-pass filter is the opposite. It lets high frequencies through while attenuating frequencies below the cutoff frequency.

A band-pass filter lets frequencies that are near the cutoff frequency to pass through but attenuates the frequencies above and below it.

There is a new example sketch included in the Audio Hacker library called “Filter” that implements these 3 filters. In the video below I’m using the DJ Shield to make it easy to provide inputs but it is not strictly required. An audio source is plugged into the Audio Hacker input. A pot connected to A0 controls the cutoff frequency. A button on digital pin 5 starts/stops the audio processing, and a button on digital pin 4 controls the filter selection. I’m lighting up the red LED for low-pass filter, blue LED for high-pass filter, and both LEDs for band-pass filter.

Now shown in the video is the effect of the filter resonance. The pot conntected to A1 controls the resonance of the filter. Resonance amplifies the frequencies around the cutoff frequency, and has an especially cool effect when using a low-pass filter.

The resonant filter implemented here is adapted from the code here. I hope this simple project lets you hear how different filters sound and gives you something new to explore with your Audio Hacker shield!

Published by Michael, on September 22nd, 2015 at 6:55 am. Filed under: Arduino,Audio. | 1 Comment |

Using a Video Experimenter as MIDI Controller

This simple project shows how a video signal captured by a Video Experimenter Shield can be used to send MIDI messages to a synthesizer. A small camera module is connected to the input of the Video Experimenter (the red wire in the picture is for powering the camera from the Arduino VIN pin). The video output goes to a small TV. A MIDI shield sits atop the Video Experimenter to allow the Arduino to send MIDI messages to a Synthino XM synthesizer. By the way, the Synthino XM is our new synthesizer product and you can read all about it on It’s awesome.

Video Experimeter as MIDI Controller

The Arduino sketch uses the Video Experimenter’s frame capture ability to capture simple monochrome low-res frames. The “on” pixels are counted to determine the pitch of the note that should be sent to the synthesizer. The code then just sends a MIDI note-on message to play a note on the synth. The brigher the image (more “on” pixels) sends higher pitched notes. In the video you can see me adjusting the Video Experimenter threshold knob to alter the brightness and also shining a flashlight on the camera.

This source code for this project is the example “VideoMIDI” in the TVout library for Video Experimenter.

Published by Michael, on September 5th, 2015 at 1:24 pm. Filed under: Arduino,Audio,Video. | No Comments |

Digit Shield Used in Concrete 3D Printer

Wow, this is the craziest 3D printing I’ve ever seen. The material is concrete! Andrey has been working very hard for years to developed a 3D printer than can literally print houses. Here is the castle he printed.


For more information about this, check out Andrey’s web site:

Inside the sophisticated controller for this printer is a nootropic design Digit Shield. I don’t know the details of how this all works, but this controller is indeed impressive.


Looks great! Here it is in action:

Published by Michael, on July 17th, 2015 at 9:18 am. Filed under: Arduino. | No Comments |